Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.13.484172

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to a worldwide Coronavirus Disease 2019 (COVID-19) pandemic. Despite high efficacy of the authorized vaccines, protection against the surging variants of concern (VoC) was less robust. Live-attenuated vaccines (LAV) have been shown to elicit robust and long-term protection by induction of host innate and adaptive immune responses. We sought to develop a COVID-19 LAV by generating 3 double open reading frame (ORF)-deficient recombinant (r)SARS-CoV-2 simultaneously lacking two accessory open reading frame (ORF) proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). Here, we report that these double ORF-deficient rSARS-CoV-2 have slower replication kinetics and reduced fitness in cultured cells as compared to their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2 showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against different SARS-CoV-2 VoC, and also activated viral component-specific T-cell responses. Notably, the double ORF-deficient rSARS-CoV-2 were able to protect, as determined by inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2. Collectively, our results demonstrate the feasibility to implement these double ORF-deficient rSARS-CoV-2 as safe, stable, immunogenic and protective LAV for the prevention of SARS-CoV-2 infection and associated COVID-19 disease.


Subject(s)
Coronavirus Infections , Fractures, Open , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.08.459334

ABSTRACT

Tuberculosis (TB) infection, caused by the airborne pathogen Mycobacterium tuberculosis ( M . tb ), resulted in almost 1.4 million deaths in 2019 and the number of deaths is predicted to increase by 20% over the next 5 years due to the COVID-19 pandemic. Upon reaching the alveolar space, M . tb comes in close contact with the lung mucosa before and after its encounter with host alveolar compartment cells. Our previous studies show that homeostatic innate soluble components of the alveolar lining fluid (ALF) can quickly alter the cell envelope surface of M . tb upon contact, defining subsequent M . tb -host cell interactions and infection outcomes in vitro and in vivo . We also demonstrated that ALF from 60+ year old elders (E-ALF) vs . healthy 18- to 45-year-old adults (A-ALF) is dysfunctional with loss of homeostatic capacity and impaired innate soluble responses linked to high local oxidative stress. In this study, a targeted transcriptional assay demonstrates that M . tb exposure to human ALF alters the expression of its cell envelope genes. Specifically, our results indicate that A-ALF-exposed M . tb upregulates cell envelope genes associated with lipid, carbohydrate, and amino acid metabolism, as well as genes associated with redox homeostasis and transcriptional regulators. Conversely, M . tb exposure to E-ALF shows lesser transcriptional response, with most of the M . tb genes unchanged or downregulated. Overall, this study indicates that M . tb responds and adapts to the lung alveolar environment upon contact, and that the host ALF status determined by factors such as age might play an important role in determining infection outcome.


Subject(s)
COVID-19 , Lung Diseases , Tuberculosis
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.18.210179

ABSTRACT

ABSTRACTVaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease currently lacks a validated small animal model. Here, we show that transgenic mice expressing human angiotensin converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2-transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2-transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 4. K18 hACE2-transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL